Ramp: High Performance Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

نویسندگان

  • Shariq Bashir
  • Abdul Rauf Baig
چکیده

Mining frequent itemset using bit-vector representation approach is very efficient for small dense datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. We also present a new frequent itemset mining algorithm Ramp (Real Algorithm for Mining Patterns) using bit-vector representation approach and our bit-vector projection technique. The performance of the Ramp is compared with the current best frequent itemset mining algorithms. Different experimental results on sparse datasets show that mining frequent itemset using Ramp is faster than the current best algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramp: Fast Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

Mining frequent itemset using bit-vector representation approach is very efficient for dense type datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. To check the efficiency of our bit-vector projection technique, we present a ...

متن کامل

Fast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support

Real world datasets are sparse, dirty and contain hundreds of items. In such situations, discovering interesting rules (results) using traditional frequent itemset mining approach by specifying a user defined input support threshold is not appropriate. Since without any domain knowledge, setting support threshold small or large can output nothing or a large number of redundant uninteresting res...

متن کامل

Mining High Average-Utility Itemsets with an Indexed Projection Technique

An itemset in traditional utility mining only considers individual profits and quantities of items in transactions but not its itemset length. The average-utility measure, which is the total utility of an itemset divided by its number of items within it, was then proposed to reveal a better utility effect than the original utility one. However, their proposed approach was based on the principle...

متن کامل

SA-IFIM: Incrementally Mining Frequent Itemsets in Update Distorted Databases

The issue of maintaining privacy in frequent itemset mining has attracted considerable attentions. In most of those works, only distorted data are available which may bring a lot of issues in the datamining process. Especially, in the dynamic update distorted database environment, it is nontrivial to mine frequent itemsets incrementally due to the high counting overhead to recompute support cou...

متن کامل

Fast Vertical Mining Using Boolean Algebra

The vertical association rules mining algorithm is an efficient mining method, which makes use of support sets of frequent itemsets to calculate the support of candidate itemsets. It overcomes the disadvantage of scanning database many times like Apriori algorithm. In vertical mining, frequent itemsets can be represented as a set of bit vectors in memory, which enables for fast computation. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006